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The strictly mixed problem [1] of the bending of a thin elastic plate in the shape of a segment of a circle under a uniform load 
is considered. Exact told approximate solutions of the problem together with an estimate of the root mean-square error are 
obtained. The behavioar of the bending moment at the comers and points where the boundary change is investigated. © 1997 
Elsevier Science Ltd. All rights reserved. 

1. S T A T E M E N T  O F  T H E  P R O B L E M  

It is required to determine the deflection of a thin elastic sheet in the shape of a segment of a circle 
(see Fig. 1) bent by a uniform load of intensity q0 = const such that the sheet is supported on the edge 
0 < x < a, y = 0 and damped  on the remaining edges. 

In bipolar coordinates [2, p. 44], the problem reduces to solving the equation 

a- '~ '+ 2 ~ +  ~ ' 4 " + 2 ~ T - 2  ~ - '~+  lJ (w)=  qOhD 

(D = El3~[ 12 (1 -v2)] ,  h = (a cha + cos~) -I) 

(1.1) 

with boundary conditions 

Wll3=, t = wl~l13= v = 0, -*~ < a < ~* 

wl13= 0 = Wl;l13= 0 = 0, -** < a < 0 

wl13=0 = wl31311;=0 =0,  0 < a < * *  

(1.2) 

Here  I is the thickness of  the sheet, E is Young's modulus and v is Poisson's ratio. 

2. R E D U C T I O N  OF T H E  P R O B L E M  TO A R I E M A N N  P R O B L E M  

We will first "extend" the boundary conditions [3, p. 175] 

wll~= v = wl~l13= v = wl13=0 = 0, -** < a < ** 

w#~= 0 = f_(a), w~l~= o = f+(a), - ~ < a <** 

Applying a Fotrder transformation to boundary conditions (2.1)-(2.2), we obtain 

W(x, 0)=0, ~(x, 0)=F+(x), W~(x, 0)=F-(x) 

W(x, ~ ) = 0 ,  Wl3(x, ' t ) = O , - * * < x < * *  

Here  
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W(x,  6) = 1 S**w(Ct, ~)eimdcx 
~l z rc _~ 

and F +(x) and F-(x) are respectively the limiting values of the analytic functions in the upper and lower 
half-planes. 

Considering now the solution of Eq. (1.1), we represent w(~  13) in the form [2, p. 115] 

3 
w(a,  13)= ~D[W0(a ,  13)+(chct+cosl3) -I1 (2.4) 

The second term in the square brackets is a particular solution of the inhomogeneous equation (1.1), 
and w0(ct, 13) is the general solution of the corresponding homogeneous equation. 

We will determine the Fourier transform W(x, 6) of the function w0(~ 13) and satisfy boundary 
conditions (2.3). This will yield the following Riemann problem 

F+ (x)  = A(x)(  F -  (x)  + kH(x)) ,  - ** < x < ** (2.5) 

Here 

) 2 " - ~  = sh~x t 'GI (x )G2(x)+4G3(x)G4(x)  + 

+2G3(x)G5(x) + 2shx~ (GI (x )G4(x )_G2(x )G3(x ) )  (2.6) 
sh nx sin Y 

x 2 sin 2V - x sh 2xy x sh 2x7 + sin 2T 
G I ( x ) =  s h 2 x ~ - x 2 s i n 2 ~  • ' G 2 ( x ) =  ch2xy-cos2y  

x 2 ch xys iny -  xsh xVcos Y 
G3(x ) = sh 2 ~ - x 2 sin 2 y 

chrysinv + xshx3'cosT xchx3'sin ¥ -  shxycosy 
G4(x)= ch2xT-cos2y ' G5(x)= shnxsin2 Y 

A(x)  = sh2 x~ - x 2 sin 2 V , Z, = qo.a3 

x(xsin2T- sh 2xy) 16D 

Note that we have used a representation of the Fourier transform of the function w0(~ I~) of [4] to 
obtain the Riemann problem (2.5). 

3. THE EXACT SOLUTION OF THE RIEMANN PROBLEM 

We will represent the Riemann problem (2.5) in the slightly different form 

_ ~ ; + K C x ~ F + ¢ x  ~ = F - ( x )  ~,l-l(x) (3.1) 

/J--- 0 V 
Fig. 1. 
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where 
( ~-~ )-I 

K(x) =-  2 +q2A(x) , lim K(x) = 1, IndK(x) = 0 (3.2) 

Here qz + and ~/z- are defined and analytic in the upper and lower half-planes respectively, and their 
imaginary part is positive. 

Starting from the: structure (2.6) of the function H (x), we will seek a solution of the Riemann problem 
(3.1) in the class of functions [3, p. 23] such that 

e L~, F-(x)  x ~ - / q -  -I e N (3.3) 

For solutions of this class, in view of condition (3.2), problem (3.1) has a unique solution [3, p. 23], 
which can be written in the form 

+ -1 
(3.4) 

F- (x) = -2X- (x)( x~f~- iq- )a-  (x) (3.5) 

where 

X + ( x )  = exp{Sgn~+lv-'(lnK(~))(t)}(x) (3.6) 

f2±(x) = V{ sgn~±l V-I(X-('O~/'t-iq-H('O l(t)l(x)) J (3.7) 

Here V and V -1 are operators of the direct and inverse Fourier transformation, respectively. 
Since it is diffictdt to solve the Riemann problem (3.4)--(3.7) numerically, we have the problem of 

obtaining an appro:fimate solution of the Riemann problem (3.1) and, naturally, of the original problem 
with a corresponding error estimate. 

4. AN A P P R O X I M A T E  S O L U T I O N  OF THE R I E M A N N  P R O B L E M .  
E R R O R  ESTIMATE.  

In addition to the Riemann problem (2.5), we will consider the corresponding approximate problem 

where 

.~'~-i~+Efx)P+(x)= P-(x) Zfl(x) 
2 

(4.1) 

= - , x 2 + b  2 
(4.2) 

/~(x) = 2~-n(/ll (x) +/~2 (x)) (4.3) 

/~, (x) = 2x2 - 4 4a 2 (4.4) 
3 (x 2 + l)(x 2 + 4)(x 2 + a22) 

/~2(x) = (x 2 + I)(x 2 +b2) ' H2(0 ) =/~2(0) (4.5) 

The parameters al, bl,p, al, b2,p are not known in advance, but are chosen such that the approximate 
solution has minimum error. The solution is found using the formulae 

+ -I~ r(,)= ) n÷(x) (4.6) 
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/ ~ - ( x ) = - 2 X - ( x ) ( ~ L - ~  =) ~ - ( x )  (4.7) 

I} = <'> 

The functions )~±(x) are found by factorizing the coefficient/((x). By puttingp = q, we have the simple 
factorizations 

)~+(x)= x+al i ,  ) t - (x )=  x - b l i  
x + bli x - ali 

The estimate for the root mean-square error of the approximate solution is obtained as in [3, p. 156]. 
For (3.3), after further investigation, we obtain the error estimate 

i I <49> 
(AF+(x) = F+ (x)- F+ (x')) 

Notice that 

Here 

(4.10) 

e= 1-11 max ~l'  b-'l )' ~ =  al ) 

- - < , < ®  - ® < x < -  

For the approximate solution to have the minimum root mean-square error, the quantity e must be 
as small as possible, and the function H(x)  must be as "close" as possible to the function H(x). By 
minimizing these quantities we fix the parameters al, bl, p, al, b2. Different values of the angles T 
characterizing the shape of the section will correspond to different parameters al, bl, p, al, b2 and 
quantities el, e2. The values obtained for the parameters al, bl, p, b2, (a2 = 1.4) and quantities el, e2 
for different values of T are given below 

3' _n _~ 3 _~ 5 3 7 n 
8 4 ~ 2 ~ ~ 

al 9.539 7.4983 2,8522 2,0602 1.6175 1.0433 0.7713 0.5975 
bl 7.1984 3,596 2.4004 1.8143 1.4804 0.8743 0.6427 0.5149 
p 8.8517 3.822 2.1785 1.3802 0.9214 0,8052 0.6029 0.4285 
El 0,1553 0.1074 0,0834 0.0684 0.0595 0.0325 0.0245 0.0223 
e2 1.065 1.075 I. ! 55 1,286 1.51 1.5 332 13.296 35.04 
b2 7o213 6.058 7.421 3.152 !,753 0.875 0.074 0.002 

5. C O N S T R U C T I O N  OF AN A P P R O X I M A T E  S O L U T I O N  OF THE 
R I E M A N N  P R O B L E M  IN E X P L I C I T  F O R M  

The functions defined by formula (4.8) form a component part of the approximate solution of the 
Riemann problem (4.1). Their direct use can lead to difficulties, which are relative l~ easily overcome 
by taking into account the structure of the function ~l(x). We will find the functions ~ - (x )  in succession. 
We will first solve the problem of a "jump" for the function 
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&(x) = ~. x-al!, k(x) = &*(x)-G-(x) 
x - bli 

where 
4 iA k 

~ * ( x )  = E ~ ,  oq = ], 
, = ]  x +ctki 

4 iBk iBo 
~-(x) = Z 

k=! x--CXki x - b l i  

Ot 2 = 2, Ot 3 = a 2 ,  o~ 4 = b 2 

(5.1) 

We will use the method of undetermined coefficients to find the constantsAk, Bk, B0 and then solve 
the problem of a "jump" for the function 

Clearly 

~ -I 

4 i A , ¢  k 
~5*(x) = Z 

kfl X+Ctki 

(5.2) 

where 

h-(x)=~ G-(x)___ + E 
,=! x + o~ki 

c, = -24~ / (~ak + p) 

This gives an approximate solution of the Riemann problem (4.1) in explicit form. It can be constructed 
by applying formulae (5.1), (5.2) and (4.3)-(4.7) in succession. The relation between this solution and 
the angle I will naturally agree with the results obtained in Section 4. 

6. EXACT AND A P P R O X I M A T E  SOLUTIONS OF THE O R I G I N A L  
PROBLEM.  E R R O R  ESTIMATE 

Solution of the ~Uemann problem (2.5) is only an intermediate stage in the solution of the original 
problem. The orig~aal problem is solved by applying an inverse Fourier transformation to the function 
W(ot, ~). The approximate solution W(oq ~l) is constructed with the same formulae as W(~ ~), only 
with F+ (x) replaced by F+ (x) 

(wp(x, 0)= F*(x), ffp(x, 0)= P+(x)). 

The approximate solution ~ ( ~  ~l) of the original problem is obtained by applying the operator of the 
inverse Fourier trmasformation to the function W(ct, ~). The error estimate will be 

xER 
I~(o,'t) 

(6.1) 

(the function U2(x, [I) appears in the representation of Wo(X, ~) [4]). 
Taking into account inequality (4.11), we have the error estimate 

MIE II wo ,a)- I1= (6.2) 
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7. A P P R O X I M A T E  C A L C U L A T I O N  OF THE BENDING MOMENTS 
AT THE CLAMPED EDGE 

The bending moment at the clamped edge is an important parameter of the theory of the bending 
of thin plates. Using the well-known formulae [2, p. 109], we have 

lt'l°(a)=-D(cha+l)V-!( d 2 i ~ / ( a ' ~ ) ' a  "~ ',~=ol ) =-D(cha+l) )~- (a)a  (7.1) 

] (7.2) 
" t, ap ll3:~J 

Thus in order to determine the bending moment on the damped part of the boundary 13 = 0, we 
must find.f_( a ) = ( V'l~- (x) )(a). Using the results of Section 5, we will find the function f_(a)  in explicit 
form 

+z B: '°- ~_(~) = 2 2VT~. no: '~ + Z B ."~ 4 ~k -b, 
4 ¢al-b,] 

4 A ~ 0 4 Ate pc! - 4~f2Z dt y~ ot < 0 (7.3) +2k(a!-bt)(p-at)~,k=l k otfe'('-"[4~ I 
To determine the bending moment on the clamped part of the boundary ~ = ¥, we first find the function 

d2W/d~ 2 [ li=-r Using the representation (2.4), we find 

d2~/] 4 d'~'ll~=,: = ~'(n~__! Cn(x)Kn(x)+ Ks(X))+ ~.C3(x)(x2 -1) (7.4) 

where 

el(x) _ x C2(x) = P+(x) 
shgx ' 

C3(x) shxT C4(x) _ ~ . . 

2 " ~  sh rt, r. sin y ' ~ - -t'5~x~ 
K I (x) = 2(G I (x)G4(x) + G2(x)G3(x)), K2(x) = 2G3(x) 
K3(x) = 2(Gj (x)G2(x)- G3(x)G4(x)), K4(x) = G l (x) 

(x 2 + 1)sh xysin 2 7- 2cosy(xchx~sin¥- shxTcos7) 
K5(x ) = sh ~ s i n  3 y 

(7.5) 

Finally, we apply the inverse Fourier transformation to Eq. (7.5), using the theory of residues. The 
values of the roots of the transcendental equations 

shz ± z sin2¥/(2¥) = 0 

(of. [2, p. 61, Tables I and 2]) will be useful here. 

(7.6) 
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8. THE B E H A V I O U R  OF THE BENDING MOMENTS AT CORNERS AND 
AT POINTS WHERE THE BOUNDARY C O N D I T I O N S  CHANGE 

Since the appro~dmate value of the moment M0 (¢x) has been found explicitly, it is possible to desc'ribe 
its behaviour at corners and at points where the boundary conditions change. We have the following 
asymptotic forms 

a l < l )  
tV <lj 

/17/0(00 ~ M 0 = 2 2~-nZCa-~_ 11 )Bt(a ~ -oo, a, >I, p>o~ t) 

(8.1) 

Use has been made of the properties of the probability integral and the fairly obvious limits 

2 at4"6~7~x:ffl 2 "~ [ e-~ d~l_ {0,, p~>l 
Gtl_i~mm 

e-(Ctt +l)¢t 
1 

o )- p < l 

ot [0__ a l > l ,  p>tX  k, k=1,2,3 
iim etal-I)C~ Set(P-Cq) dt a-,-., o ~ l  =,[0~ a I>l ,  p<tx k, p ot k+a I-l>~O 

, a l < l  

We will now investigate the behaviour of the moment Jl4~(tx) as ct --> __.oo. With this aim we write 

(A'" / /~/V(cx)--=- q°a2 (choc+cosy) ~ S c.(t)k.(t-°Odt-c3'((x)-c3((x)+ks((z) 
16 ~/2n _.  

c. (t) = (V-tC.)(t), kn(t) = (VqK.)(t) 

(8.2) 

using the convolution theorem [3, p. 15]. Taking the limit in Eq. (8.2), we will have 

~ (+oo) = M~ (+oo) = M~ = 

= -  2Tcosy-s in2y  s in2y+T qoa2(2y-sin2y s in2y+ycos¥  + 
16 ~, 8¥sin2y ys in2y -2s in2y  4(ys in2y-2s in2y)  ¥sin2y 

s in2T+2¥ s i n 2 y - 2 y  sin2¥+ 2ycosT s in2T-  2Tcosy +-- + + 
2ysin 2y ys in2y-2s in2  y 2ysin 2y ys in2y-2s in2  y 

. o . .  so.  ( / 
-t ~-~ln~-~ + cos y - ' t "  2 y sin 2y - 2 sin 2 T 

(8.3) 

(using relations (7.5) and the Tauber-type theorem of [5]). We have also assumed that bl ~> 1, % ~> 1, 
Vk and T < x/2. 1"tie last condition ensures that the functions K, (z) (n = 1, 2, 3, 4) are analytic in the 
strip [ I m  z [ ~< 1, and therefore guarantees that the limits limk_ ~ Kn(z) exist. 

9. CONCLUSIONS 

All the limiting operations in Eq. (8.2) were taken for y < x/2. Also, we used the limits 

lira f+(cx)= lim f+(o0=0 
~--)+ee (X ---) +eo 

When y ~> n/2, the moment M~(a) tends to infinity. In that case, the first roots of Eqs (7.6) become 
as important as in simpler problems of this kind [2]. On the other hand, if y < x/2, the moment at comers 
M1 and M 2 (see Fig. 1) is non-zero and can be computed exactly for different T using formula (8.3). 
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