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THE STRICTLY MIXED PROBLEM OF THE BENDING
OF A THIN ELASTIC PLATE IN THE SHAPE
OF A SEGMENT OF A CIRCLEf}

P. V. KEREKESHA
Odessa
(Received 10 November 1995)

The strictly mixed problem [1] of the bending of a thin elastic plate in the shape of a segment of a circle under a uniform load
is considered. Exact and approximate solutions of the problem together with an estimate of the root mean-square error are
obtained. The behaviour of the bending moment at the corners and points where the boundary change is investigated. © 1997
Elsevier Science Ltd. All rights reserved.

1. STATEMENT OF THE PROBLEM

It is required to determine the deflection of a thin elastic sheet in the shape of a segment of a circle
(see Fig. 1) bent by a uniform load of intensity g = const such that the sheet is supported on the edge
0 <x <a,y = 0 and clamped on the remaining edges.

In bipolar coordinates [2, p. 44], the problem reduces to solving the equation

o* o* a4 82 9? oh
[&F* 257 gt g taa Y l](w) =D (1)
(D =EB/[12 (1 - V3], k = (a cha + cosB)™!)

with boundary conditions
Wiy =wplg_y =0, ~o <O <o
W|p=0 = wﬂlﬂ=0 = 0, —oo<<0 (1.2)

Here [ is the thickness of the sheet, E is Young’s modulus and v is Poisson’s ratio.

2. REDUCTION OF THE PROBLEM TO A RIEMANN PROBLEM
We will first “extend” the boundary conditions [3, p. 175]

Wipey =Wplp_y =Wlg_¢=0, —o <t <o (21)
Wealp=0 = S (@), wplg_o=f, (@), —co <t <0 (2.2)
Applying a Fourier transformation to boundary conditions (2.1)(2.2), we obtain
W(x, 0)=0, W(x, 0)=F"(x), Wg(x, 0)=F (x)

(2.3)
W(x, v)=0, %(x, Y)=0, —o<x<00

Here
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W(x, ;3)=7%7 f w(a, B)e™da

and F*(x) and F(x) are respectively the limiting values of the analytic functions in the upper and lower
half-planes.
Considering now the solution of Eq. (1.1), we represent w(a, B) in the form [2, p. 115]

3
w(e, ﬁ):%[wo(a, B)+(cha+cosp)™] (24)

The second term in the square brackets is a particular solution of the inhomogeneous equation (1.1),
and wo(a, B) is the general solution of the corresponding homogeneous equation.

We will determine the Fourier transform W{x, B) of the function wy(c., B) and satisfy boundary
conditions (2.3). This will yield the following Riemann problem

F*(x)= A(X)(F (x)+MH(x)), =0 < x <0 25)

Here

2
Ho __x (2" _4+Gl(x)Gz(x)"'4G3(X)G4»(x))+

:/21: shmx 3
2sh
+2G3(x)G5(x)+;ﬁ;(@(x)&(x)—Gz(x)Gg(x)) (2.6)
2 .
x“sin2y—xsh2xy xsh2xy +sin2y
G = , G = ————
1(x) shzxy—xzsin2y 2(%) ch2xy-—-cos2y
2 s
G3(x)=x chxgsmy 2,\cs.h;\'ycosy
sh® xy - x“sin“ vy
chxysiny + xsh xycos xchxysiny—shxycos
Gy(x) = xysiny xY Y’ Gs(x)= xy Y‘ ZXY Y
ch2xy—-cos2y shrxsin® y
2 22 3
A(x) = sh xy x“sin“y ’ _ 408
x(xsin2y -sh2xy) 16D

Note that we have used a representation of the Fourier transform of the function wy(a, B) of [4] to
obtain the Riemann problem (2.5).

3. THE EXACT SOLUTION OF THE RIEMANN PROBLEM
We will represent the Riemann problem (2.5) in the slightly different form

Jrvig KG)F (x)= ——5)__ AH(x) (3.1)
2x~ig +x-ig
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where ~
-1
K(x)= —(Z\lxz +q? A(x)) . llim K(x)=1, IndK(x)=0 (32)
X|—yoo
Here Vz* and ¥z~ are defined and analytic in the upper and lower half-planes respectively, and their
imaginary part is positive.
Starting from the structure (2.6) of the function H (x), we will seek a solution of the Riemann problem
(3.1) in the class of functions [3, p. 23] such that

(F+(x)m*)e L, (F(x)(J;—-Tq—)—l)e L (33)

For solutions of this class, in view of condition (3.2), problem (3.1) has a unique solution [3, p. 23],
which can be written in the form

+ -1
Frx)= X*(x)(\/x+iq ) Q*(x) 34)
F(x)= —2X"(x)(\/x Z iq')n'(x) (35)
where
Xt(x)= exp{igiz'—:tl Vi(n K(‘t))(t)}(x) (3.6)
QI =V sgn t+1 V_| H(t) — (t) (x) (3-7)
%) { 2 X" (1—ig

Here V and V! are operators of the direct and inverse Fourier transformation, respectively.

Since it is difficult to solve the Riemann problem (3.4)—(3.7) numerically, we have the problem of
obtaining an approximate solution of the Riemann problem (3.1) and, naturally, of the original problem
with a corresponding error estimate.

4. AN APPROXIMATE SOLUTION OF THE RIEMANN PROBLEM.
ERROR ESTIMATE.

In addition to the Riemann problem (2.5), we will consider the corresponding approximate problem

Jx+ig R(x)F* (x)=- Fo w(x)_ 4.1)
2x—ig +x-ig
where

- - -1 1 _y x> +al
K(x)= —(2\/x2 +q° A(X)) , A(x)= —5(12 +p?) 7t ?‘Tb:z_ 4.2)
H(x) =21 (H,(x)+ Hy(x)) (4.3)

2 2

ﬁ,(x) - 2x° -4 4a) (4.4)

3 (1) +4)(x% +ad)

H,(0)b?

Ay(x)= — 2@
2(0) T+ 1)(x2 +b3)

H,(0)= H,(0) (45)

The parameters ay, by, p, a4, by, p are not known in advance, but are chosen such that the approximate
solution has minimum error. The solution is found using the formulae

- - A\ .
Frx) = x*(x)(,/x+'iq ) a*(x) (4.6)
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F(x)= —2)'(‘(x)(,/x - iq‘) Q (%) 4.7
~ . AH(1T)
Q(x)= Vi EL Lyl ~ (0} x) (438)
) { 2 X (tt-ig

The functions X* (x) are found by factorizing the coefficient K (x). By putting p = g, we have the simple
factorizations

X+ ayi

X*(x)= = n
x+bi X~ @i

The estimate for the root mean-square error of the approximate solution is obtained as in [3, p. 156).
For (3.3), after further investigation, we obtain the error estimate

oo 2 e PR,
(_L IM+(x)m+| dx+_L|AF'(x)\/}_—-_iE—| dx) <eg (4.9)

(AF%(x) = FX(x)~ F*(x))
Notice that

oo b
|ar* @, s-j—;[llcpnz =(_{3¢<x»2 dx) ] (410)

Here
12

= iE(e] ], + VR, ) L= max( ) n=+ILe,

Nx2 +1(H(x)- Hx) .

b’

1

1 1
A(x)  A(x)

, €, = max
ZJ; 2 —co< X <ool

For the approximate solution to have the minimum root mean-square error, the quantity € must be
as small as possible, and the function H(x) must be as “close” as possible to the function H(x). By
minimizing these quantities we fix the parameters a4, by, p, a;, b,. Different values of the angles y
characterizing the shape of the section will correspond to different parameters a,, by, p, a;, b, and
quantities €, €,. The values obtained for the parameters ay, by, p, b,, (a; = 1.4) and quantities g, €,
for different values of vy are given below

€|=

max
—o0g X<

y 55 3 x 5, 3, 1. ow
8 4 8 2 8 4 8

a; 9.539 7.4983 2,8522 2.0602 1.6175 1.0433 0.7713 0.5975
b, 7.1984 3,596 2.4004 1.8143 1.4804 0.8743 0.6427 05149
P 8.8517 3.822 2.1785 1.3802 09214 0.8052 0.6029 0.4285
€ 0.,1553 0.1074 00834 0.0684 0.0595 00325 0.0245 0.0223
€ 1,065 1.075 1.155 1,286 1.51 1,5332 13.296 35.04
b, 7213 6.058 7.421 3.152 1,753 0.875 0.074 0.002

5. CONSTRUCTION OF AN APPROXIMATE SOLUTION OF THE
RIEMANN PROBLEM IN EXPLICIT FORM

The functions defined by formula (4.8) form a component part of the approximate solution of the
Riemann problem (4.1). Their direct use can lead to difficulties, which are relatlvelx easily overcome
by taking into account the structure of the function Q(x) ‘We will find the functions Q~(x) in succession.
We will first solve the problem of a “jump” for the function
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Gx) =A% fxy = 6 (1) - 6 (%)
x—=bi

where

- 4
G'(x)= -
k=1 X+0!

oy =1, ay, =2, 03 =a,, 04=b,
5.1)
4 .
=3 2 B
k=1 x—akl x-bll

We will use the method of undetermined coefficients to find the constants 4, By, By and then solve
the problem of a “jump” for the function

. T - -
) =(V-ip ) G(x) =0 () -0 (x)

Clearly
- 4
a =3 A
k=1 X+0l
(5.2)
» . - -.l
- G(x) & ‘A"((“x"”) "C")
Q (x)= —+ 3, -
x_ip k=1 X+ 0Ll
where

C, =-2V2 1 (Jo, +p)

This gives an approximate solution of the Riemann problem (4.1) in explicit form. It can be constructed
by applying formulae (5.1), (5.2) and (4.3)(4.7) in succession. The relation between this solution and
the angle y will naturally agree with the results obtained in Section 4.

6. EXACT AND APPROXIMATE SOLUTIONS OF THE ORIGINAL
PROBLEM. ERROR ESTIMATE

Solution of the Riemann problem (2.5) is only an intermediate stage in the solution of the original
problem. The original problem is solved by applying an inverse Fourier transformation to the function
W(c., B). The approximate solution W{(a, B) is constructed with the same formulae as W(c, B), only
with F*(x) replaced by F *(x)

(wy(x, 0)=F*(x), Wy(x, 0)= F*(x)).

The approximate solution w(c, B) of the original problem is obtained by applying the operator of the
inverse Fourier transformation to the function W(«, B). The error estimate will be

fwe.B)-wa,Bl, < M|aF x|, M = max Uy (x,B) (6.1)
5:(0.7)
(the function U,(x, B) appears in the representation of wy(x, B) [4]).

Taking into account inequality (4.11), we have the error estimate

(e B) - (e Bl s%ﬁ (62)
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7. APPROXIMATE CALCULATION OF THE BENDING MOMENTS
AT THE CLAMPED EDGE

The bending moment at the clamped edge is an important parameter of the theory of the bending
of thin plates. Using the well-known formulae [2, p. 109], we have

d*W(o,B)

-~ D _
Mo () = - —(cha+ )V ‘( B

]: —%(chow ) f. () (7.1)

J (7.2)
B=y

Thus in order to determine the bending moment on the clamped part of the boundary B = 0, we
must findf_(o)) = (V"'F~ (x))(x). Using the results of Section 5, we will find the function f _(ct) in explicit
form

B=0

~ 2 ¥
MY(a)=—§(cha+l)V"[d—m

dBZ

k=1 al —(lk k=1 ak —al‘

4 b, — 0. 2i ifag+pial
-y Al let—L 14 e dui|+
'El k[ a; + 0, ]{ :/7 <I> ]
A

4 2 0 t(p-ay) dt 4
+2Ma; ~b))p-a)Y A f dP) o420y —F———, a<0  (7.3)
(q I Xp 1)1‘2;.l k (lk+P.{ I\/;l = r———ak+p o

To determine the bending moment on the clamped part of the boundary p = v, we first find the function
d*W/dp*|p~y Using the representation (2.4), we find

- 4 - 4 _
f()= Zﬁﬁk(Boe“"’ +Y ( 4= )Bke“'" +3 2‘—"—-—-blB,‘e““"’l -

a*w
dp?

n=1

= x( )f C,(0)K, (x)+ Ks(x)]+ AC; (x)(x2 ~1) (74)
B=y
where

ﬂi). = ___x___, G, (x)= p"+(x)

«/ﬁ sh x
G ___sha  G® g
J2r  shmxesiny’ 2m 3 (15)

K, (x) = 2(G, ()G, (1) + Gy (1)Gs(x)), Ky(x) =2G3(x)

K3(x) = 2(G)(x)Gy(x) — G3(x)G4(x)), K4(x)=Gy(x)

(x? + 1)sh xysin? Y~ 2 cos y(x ch xysiny — sh xy cos ¥)
shmxsin®y

Ks(x)=

Finally, we apply the inverse Fourier transformation to Eq. (7.5), using the theory of residues. The
values of the roots of the transcendental equations

shz £ z sin2y/(2y) = 0 (7.6)
(cf. [2, p. 61, Tables 1 and 2]) will be useful here.
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8. THE BEHAVIOUR OF THE BENDING MOMENTS AT CORNERS AND
AT POINTS WHERE THE BOUNDARY CONDITIONS CHANGE

Since the approximate value of the moment M, (o) has been found explicitly, it is possible to describe
its behaviour at corners and at points where the boundary conditions change. We have the following
asymptotic forms

Mo(a) 0[ } o — -0, Iflo(a)—)eo(aa—oo, a<t)

Vol
(8.1)

My() = M, =242n1{b' —i)B,(a-»—oo, a>1, p>a,)
a, -

Use has been made of the properties of the probability integral and the fairly obvious limits

lim e~(@+be l_i'a”flﬁle—rzdt {0 p=1
o—~»—00 ‘\/E o oo, p<1

d 0, a>1, p>a,, k=12,3
lim €4~ ')“[e'(” «) 4 _Jo, a>1, p<oy, p-o,+a —-1=0

a—r-o Itl
0 o, a3 <1

We will now investigate the behaviour of the moment A?.,(a) as . — *oo, With this aim we write

- 2 4 1 +o0
M, (o) = - q‘l’; (cha +cos y)(’E] ﬁ _L c, (k, (t —o)dt — c3{00) — c3 () + ks (a)J (82)

e, () =(V'C ), k,(1)=(VT'K,)(1)

using the convolution theorem [3, p. 15]. Taking the limit in Eq. (8.2), we will have

M‘Y (too) = M‘Y (Loo) = M'Y =

q0a2(2'y sin2y sin27+ycos‘y + 2ycosY — s'm27 sm2y+'y

16 \ 8ysin2y ysin2y-— 2sin? Y 4(ysin2y- 2sin’ Y) Ysin2y

+sin27+2y sin2y -2y +sm2y+27cosy sin 2y — 2ycosy
2ysin2y ysin27—25in27 2ysin2y Ysin2y - 2sin® y

4cos Y- sm27 (0 5y — )sm2¥ ZYcosy 2] (83)

2sin’y ysin2y - 2sin? Y

(using relations (7.5) and the Tauber-type theorem of [5]). We have also assumed that b, = 1, o =1,
Vk and y < ©/2. The last condition ensures that the functions K, (z) (n = 1, 2, 3, 4) are analytlc in the
strip | Im z | < 1, and therefore guarantees that the limits hmk_,, W(2) exist.

9. CONCLUSIONS
All the limiting operations in Eq. (8.2) were taken for v < n/2. Also, we used the limits
lim f,(a)= lim f,()=0
o400 a—r+00

When v = n/2, the moment M,{c) tends to infinity. In that case, the first roots of Eqs (7.6) become
as important as in simpler problems of this kind [2]. On the other hand, if y < #/2, the moment at corners
M; and M, (see Fig. 1) is non-zero and can be computed exactly for different y using formula (8.3).
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